

ACTIVE HOUSE CONCEPT IN IVANO-FRANKIVSK PUBLIC BUILDING

Mykola Yatsynovych

20/04/2021

Project HUSKROAUA/1702/6.1/0075 Cross-Border Network of Energy Sustainable Universities (NET4SENERGY) The EU is not responsible for the contents of communication materials prepared by grant beneficiaries

EUROPEAN UNION

Lead beneficiary: Ivano-Frankivsk National Technical University of Oil and Gas Project coordinator: Prof. Maksym Karpash mkarpash@nung.edu.ua

Image source: Albert, Righter and Tittmann Architects

Project HUSKROAUA/1702/6.1/0075 Cross-Border Network of Energy Sustainable Universities (NET4SENERGY) The EU is not responsible for the contents of communication materials prepared by grant beneficiaries

EUROPEAN UNION

GRAPHICS IN HONOUR OF AST

Project HUSKROAUA/1702/6.1/0075 Cross-Border Network of Energy Sustainable Universities (NET4SENERGY) The EU is not responsible for the contents of communication materials prepared by grant beneficiaries

RECONSTRUCTION PROJECT OF THE OLD BUILDING

Project HUSKROAUA/1702/6.1/0075 Cross-Border Network of Energy Sustainable Universities (NET4SENERGY) The EU is not responsible for the contents of communication materials prepared by grant beneficiaries

UROPEAN UNIO

Lead beneficiary: Ivano-Frankivsk National Technical University of Oil and Gas Project coordinator: Prof. Maksym Karpash mkarpash@nung.edu.ua

ENCLOSING STRUCTURES OF THE BUILDING

Outside walls

Bordered by other buildings

- brickwork

- polystyrene foam insulation Ferozit 13 kg / m3

Project HUSKROAUA/1702/6.1/0075 Cross-Border Network of Energy Sustainable Universities (NET4SENERGY) The EU is not responsible for the contents of communication materials prepared by grant beneficiaries

UROPEAN UNIO

Lead beneficiary: Ivano-Frankivsk National Technical University of Oil and Gas Project coordinator: Prof. Maksym Karpash mkarpash@nung.edu.ua

ENCLOSING STRUCTURES OF THE BUILDING

Comparison of heat losses through the outer walls of two adjacent buildings

Project HUSKROAUA/1702/6.1/0075 Cross-Border Network of Energy Sustainable Universities (NET4SENERGY) The EU is not responsible for the contents of communication materials prepared by grant beneficiaries

ENCLOSING STRUCTURES OF THE BUILDING

Roof

- 1,5 mm pvc membrane
- 15 mm OSB stove
- --- 30 mm ventilated air layer
- -- 1,5 mm air barrier
- 350 mm fiberglass insulation Isover Profi
- 1,5 mm vapor barrier membrane
 250 mm air layer where the cooling system pipelines are located
 9 mm drywall

200 mm concrete screed
where the pipes of the heating system are located

250 mm polystyrene foam insulation Ferozit

soil with a contour of pipelines of cooling system

Project HUSKROAUA/1702/6.1/0075 Cross-Border Network of Energy Sustainable Universities (NET4SENERGY) The EU is not responsible for the contents of communication materials prepared by grant beneficiaries

EUROPEAN UNIO

Lead beneficiary: Ivano-Frankivsk National Technical University of Oil and Gas Project coordinator: Prof. Maksym Karpash mkarpash@nung.edu.ua

ENCLOSING STRUCTURES OF THE BUILDING

Thermal bridges

Project HUSKROAUA/1702/6.1/0075 Cross-Border Network of Energy Sustainable Universities (NET4SENERGY) The EU is not responsible for the contents of communication materials prepared by grant beneficiaries

UROPEAN UNIO

Lead beneficiary: Ivano-Frankivsk National Technical University of Oil and Gas Project coordinator: Prof. Maksym Karpash mkarpash@nung.edu.ua

ENCLOSING STRUCTURES OF THE BUILDING

Windows and doors

REHAU GENEO PHZ

ROTO Q LINE

ALUTECH

4i - 16Ar - 4 - 16Ar - 4i4i - 8Ar - 4 - 8Ar - 4 - 8Ar - 4i

Project HUSKROAUA/1702/6.1/0075 Cross-Border Network of Energy Sustainable Universities (NET4SENERGY) The EU is not responsible for the contents of communication materials prepared by grant beneficiaries

EUROPEAN UNION

Lead beneficiary: Ivano-Frankivsk National Technical University of Oil and Gas Project coordinator: Prof. Maksym Karpash mkarpash@nung.edu.ua

ENCLOSING STRUCTURES OF THE BUILDING

Windows

Hungary Slovakia Romania Ukraine ENI Cross-border Cooperation Programme 2014-2020

EUROPEAN UNIO

Lead beneficiary: Ivano-Frankivsk National Technical University of Oil and Gas Project coordinator: Prof. Maksym Karpash mkarpash@nung.edu.ua

ENCLOSING STRUCTURES OF THE BUILDING

Thermal bridges, window placement

Project HUSKROAUA/1702/6.1/0075 Cross-Border Network of Energy Sustainable Universities (NET4SENERGY) The EU is not responsible for the contents of communication materials prepared by grant beneficiaries

ENCLOSING STRUCTURES OF THE BUILDING

Thermal bridges, window placement

The difference between the maximum and minimum value of the surface temperature is below 5 °C. Conclusion - window thermal bridges are not so essential

Project HUSKROAUA/1702/6.1/0075 Cross-Border Network of Energy Sustainable Universities (NET4SENERGY) The EU is not responsible for the contents of communication materials prepared by grant beneficiaries

EUROPEAN UNIO

Lead beneficiary: Ivano-Frankivsk National Technical University of Oil and Gas Project coordinator: Prof. Maksym Karpash mkarpash@nung.edu.ua

ENCLOSING STRUCTURES OF THE BUILDING

Thermal bridges

EUROPEAN UNIO

Lead beneficiary: Ivano-Frankivsk National Technical University of Oil and Gas Project coordinator: Prof. Maksym Karpash mkarpash@nung.edu.ua

ENCLOSING STRUCTURES OF THE BUILDING

Thermal bridges

Project HUSKROAUA/1702/6.1/0075 Cross-Border Network of Energy Sustainable Universities (NET4SENERGY) The EU is not responsible for the contents of communication materials prepared by grant beneficiaries

ENCLOSING STRUCTURES OF THE BUILDING

Thermal bridges

Design without thermal bridges significantly improves the quality of structures. This increases the durability of structures and saves thermal energy for heating.

In the Passive House heat losses through the thermal bridges are also greatly reduced. As usual, they are so minor that you don't need to take them into account.

UROPEAN UNION

0

Lead beneficiary: Ivano-Frankivsk National Technical University of Oil and Gas Project coordinator: Prof. Maksym Karpash mkarpash@nung.edu.ua

ENERGY CONSUMPTION

Specific consumption of primary energy, kWh / m² per year: 95,8

Project HUSKROAUA/1702/6.1/0075 Cross-Border Network of Energy Sustainable Universities (NET4SENERGY) The EU is not responsible for the contents of communication materials prepared by grant beneficiaries

Type of consumption	Estimated consumption for the year	
	thousand kWh	кВт·год/м ²
		[kWh / m ³]
Energy consumption of heating systems	3,5	[1,4]
Energy consumption of ventilation systems	2,4	[1]
Energy consumption of hot water supply	12,5	[5,2]
systems		
Energy consumption of cooling systems	0,2	[0,07]
Power consumption of lighting systems	11,8	[4,9]
TOTAL:	30,4	[12,57]

PARTNERSHIP

WITHOUT BORDERS

- Energy consumption of heating systems
- Energy consumption of ventilation systems
- Energy consumption of hot water supply systems
- Energy consumption of cooling systems
- Power consumption of lighting systems

KNOW-HOW 1 - HEATED FLOOR AS A HEAT BUFFER

soil with a contour of pipelines of cooling system

Project HUSKROAUA/1702/6.1/0075 Cross-Border Network of Energy Sustainable Universities (NET4SENERGY) The EU is not responsible for the contents of communication materials prepared by grant beneficiaries

air layer where the cooling system

pipelines are located

drywall

KNOW-HOW - INTEGRATED HEATING AND COOLING SYSTEM

Under the roof level

Floor level of the third floor

concrete screed where the pipes of the heating system are located

Floor level of the second floor

concrete screed where the pipes of the heating system are located

Ground floor level

concrete screed where the pipes of the heating system are located

KNOW-HOW 2 – GROUND WATER PIPE HEAT EXCHANGER FOR COOLING SYSTEM

Floor

- 200 mm concrete screed where the pipes of the heating system are located
- 250 mm polystyrene foam insulation Ferozit
- soil with a contour of pipelines of cooling system

KNOW-HOW 3 - HEATING SYSTEM WITH THE POSSIBILITY OF MODERNIZATION

GENERATION SYSTEM

System with solar panels to power the heat pump

Solid fuel boiler

Storage tank

Energy distribution and transportation subsystem

The EU is not responsible for the contents of communication materials prepared by grant beneficiaries

Thanks for your attention !

